Title: | Predicting Disease Spread from Flow Data |
---|---|
Description: | Provides functions and classes designed to handle and visualise epidemiological flows between locations. Also contains a statistical method for predicting disease spread from flow data initially described in Dorigatti et al. (2017) <doi:10.2807/1560-7917.ES.2017.22.28.30572>. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis. |
Authors: | Pawel Piatkowski [aut, cre] , Paula Moraga [aut] , Isobel Blake [ctb, dtc], Thibaut Jombart [aut], VP Nagraj [aut], Zhian N. Kamvar [aut] , Salla E. Toikkanen [aut] |
Maintainer: | Pawel Piatkowski <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.2.1 |
Built: | 2024-11-13 02:58:32 UTC |
Source: | https://github.com/reconhub/epiflows |
An epiflows object inherits the epicontacts class, so the subsetting mechanism is also inherited. The benefits is that it's extremely flexible. However, this also means that it's possible for the contacts to contain IDs that are not present in the locations metadata and vice versa. The best way to consistently subset an epiflows object is present in the examples.
## S3 method for class 'epiflows' x[i, j, k = TRUE, l = TRUE, ...]
## S3 method for class 'epiflows' x[i, j, k = TRUE, l = TRUE, ...]
x |
An |
i |
An integer, logical, or character vector of one or more location. |
j |
An integer, logical, or character vector to subset the flows data frame. |
k |
A character vector of one or more columns to be retained in the location data. |
l |
A character vector of one or more columns to be retained in the flows data frame. Note: if using numbers, the first column stands for the first column after "n". |
... |
Additional parameters passed to |
Returns a subset of an epiflows object.
An epiflows
object.
Zhian N. Kamvar
data(Brazil_epiflows) # You can subset, but the flows information will still be present Brazil_epiflows[j = "Espirito Santo"] # To help with this, use `thin` from epiflows epicontacts::thin(Brazil_epiflows[j = "Espirito Santo"]) epicontacts::thin(Brazil_epiflows[j = c("Espirito Santo", "Rio de Jenerio")])
data(Brazil_epiflows) # You can subset, but the flows information will still be present Brazil_epiflows[j = "Espirito Santo"] # To help with this, use `thin` from epiflows epicontacts::thin(Brazil_epiflows[j = "Espirito Santo"]) epicontacts::thin(Brazil_epiflows[j = c("Espirito Santo", "Rio de Jenerio")])
Adds/Retrieves longitude/latitude values to location data within an epiflows object.
Coordinates are added to object's locations slot as lon
and lat
columns.
add_coordinates( x, coordinates = c("lon", "lat"), loc_column = "id", overwrite = FALSE ) get_coordinates(x, ...) ## S3 method for class 'epiflows' get_coordinates(x, location = NULL, ...)
add_coordinates( x, coordinates = c("lon", "lat"), loc_column = "id", overwrite = FALSE ) get_coordinates(x, ...) ## S3 method for class 'epiflows' get_coordinates(x, location = NULL, ...)
x |
An |
coordinates |
Either names of the appended columns with longitudes and latitudes, respectively (default: "lon" and "lat") or a data frame with longitude and latitude columns. |
loc_column |
Name of the column where location names are stored (default: "country"). |
overwrite |
If TRUE, retrieves all geocodes, even those already retrieved. If FALSE (default), overwrites only NAs. |
... |
unused |
location |
a character specifying a single location to return as a vector of coordinates. You cannot specify multiple locations with this parameter. Defaults to 'NULL', indicating all locations. |
An updated epiflows
object.
Pawel Piatkowski, Salla Toikkanen, Zhian Kamvar
map_epiflows()
; plot.epiflows()
; get_locations()
; get_vars()
;
global_vars()
# Setting up the data data("Brazil_epiflows") data("YF_coordinates") get_coordinates(Brazil_epiflows) # no coordinates yet ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) get_coordinates(ef) get_coordinates(ef, location = "Espirito Santo") # coordinates for Espirito Santo if (interactive()) { # You can use google maps' geocode functionality if you have a decent # internet connection # NOTE: you may need to authenticate with Google Maps API beforehand # using ggmap::register_google() ef2 <- add_coordinates(Brazil_epiflows, loc_column = "id") ef2 }
# Setting up the data data("Brazil_epiflows") data("YF_coordinates") get_coordinates(Brazil_epiflows) # no coordinates yet ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) get_coordinates(ef) get_coordinates(ef, location = "Espirito Santo") # coordinates for Espirito Santo if (interactive()) { # You can use google maps' geocode functionality if you have a decent # internet connection # NOTE: you may need to authenticate with Google Maps API beforehand # using ggmap::register_google() ef2 <- add_coordinates(Brazil_epiflows, loc_column = "id") ef2 }
Convert to SpatialLinesDataFrame class
as.SpatialLinesDataFrame(x) ## S3 method for class 'epiflows' as.SpatialLinesDataFrame(x)
as.SpatialLinesDataFrame(x) ## S3 method for class 'epiflows' as.SpatialLinesDataFrame(x)
x |
an epiflows object |
an object of class [sp::SpatialLinesDataFrame]
data("Brazil_epiflows") data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) ef2 <- epicontacts::thin(ef[j = c("Espirito Santo", "Italy"), contacts = "both"]) as.SpatialLinesDataFrame(ef2)
data("Brazil_epiflows") data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) ef2 <- epicontacts::thin(ef[j = c("Espirito Santo", "Italy"), contacts = "both"]) as.SpatialLinesDataFrame(ef2)
epiflows
is a package for predicting and visualising spread of infectious
diseases based on flows between geographical locations, e.g., countries.
epiflows
provides functions for calculating spread estimates, handling flow
data, and visualization.
The main functions of the package are make_epiflows()
for
constructing an epiflows object and estimate_risk_spread()
to estimate
potential spread. Visualization is available for maps, networks, and grids.
For details, see the vignettes: vignette("introduction", package = "epiflows")
vignette("epiflows-class", package = "epiflows")
Calculates the mean and 95% confidence interval of the estimated number of
disease cases that could potentially seed a disease outbreak in the locations
they are travelling to, comprising exportations (infected residents of the infectious
location travelling abroad during the incubation or infectious period), and
importations (international tourists infected by the disease during
their stay in the infectious location and returning to their home location).
The mean and 95% confidence intervals are obtained by numerically sampling
n_sim
times from the incubation and infectious period distributions.
If parameter return_all_simulations
is set to TRUE
, the function returns all simulations
for each location.
estimate_risk_spread(...) ## Default S3 method: estimate_risk_spread( location_code = character(0), location_population = numeric(0), num_cases_time_window = numeric(0), first_date_cases = character(0), last_date_cases = character(0), num_travellers_to_other_locations = numeric(0), num_travellers_from_other_locations = numeric(0), avg_length_stay_days = numeric(0), r_incubation = function(n) { }, r_infectious = function(n) { }, n_sim = 1000, return_all_simulations = FALSE, ... ) ## S3 method for class 'epiflows' estimate_risk_spread( x, location_code = character(0), r_incubation = function(n) { }, r_infectious = function(n) { }, n_sim = 1000, return_all_simulations = FALSE, ... )
estimate_risk_spread(...) ## Default S3 method: estimate_risk_spread( location_code = character(0), location_population = numeric(0), num_cases_time_window = numeric(0), first_date_cases = character(0), last_date_cases = character(0), num_travellers_to_other_locations = numeric(0), num_travellers_from_other_locations = numeric(0), avg_length_stay_days = numeric(0), r_incubation = function(n) { }, r_infectious = function(n) { }, n_sim = 1000, return_all_simulations = FALSE, ... ) ## S3 method for class 'epiflows' estimate_risk_spread( x, location_code = character(0), r_incubation = function(n) { }, r_infectious = function(n) { }, n_sim = 1000, return_all_simulations = FALSE, ... )
... |
Arguments passed onto the default method. |
location_code |
a character string denoting the infectious location code |
location_population |
population of the infectious location |
num_cases_time_window |
cumulative number of cases in infectious location in time window |
first_date_cases |
string with the date of the first disease case in infectious location ("YYYY-MM-DD") |
last_date_cases |
string with the date of the last disease case in infectious location ("YYYY-MM-DD") |
num_travellers_to_other_locations |
number of travellers from the infectious location visiting other locations (T_D) |
num_travellers_from_other_locations |
number of travellers from other locations visiting the infectious location (T_O) |
avg_length_stay_days |
average length of stay in days of travellers from other locations visiting the infectious location. This can be a common number for all locations or a vector with different numbers for each location |
r_incubation |
a function with a single argument |
r_infectious |
a function with a single argument |
n_sim |
number of simulations from the incubation and infectious distributions |
return_all_simulations |
logical value indicating whether the returned object is a data frame with all simulations
( |
x |
an epiflows object |
if return_all_simulations
is TRUE
, data frame with all simulations. If return_all_simulations
is FALSE
,
data frame with the mean and lower and upper limits of a 95% confidence interval of the number
of cases spread to each location
Paula Moraga, Zhian Kamvar (epiflows class implementation)
Dorigatti I, Hamlet A, Aguas R, Cattarino L, Cori A, Donnelly CA, Garske T, Imai N, Ferguson NM. International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017. Euro Surveill. 2017;22(28):pii=30572. DOI: doi:10.2807/1560-7917.ES.2017.22.28.30572
Construction of epiflows object: make_epiflows()
Default variables used in the epiflows implementation: global_vars()
Access metadata from the epiflows object: get_vars()
## Using an epiflows object -------------------------------- data("YF_flows") data("YF_locations") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ## functions generating incubation and infectious periods incubation <- function(n) { rlnorm(n, 1.46, 0.35) } infectious <- function(n) { rnorm(n, 4.5, 1.5/1.96) } res <- estimate_risk_spread(ef, location_code = "Espirito Santo", r_incubation = incubation, r_infectious = infectious, n_sim = 1e5, return_all_simulations = TRUE) boxplot(res, las = 3) ## Using other data -------------------------------------------------- data(YF_Brazil) indstate <- 1 # "Espirito Santo" (indstate = 1), # "Minas Gerais" (indstate = 2), # "Southeast Brazil" (indstate = 5) res <- estimate_risk_spread( location_code = YF_Brazil$states$location_code[indstate], location_population = YF_Brazil$states$location_population[indstate], num_cases_time_window = YF_Brazil$states$num_cases_time_window[indstate], first_date_cases = YF_Brazil$states$first_date_cases[indstate], last_date_cases = YF_Brazil$states$last_date_cases[indstate], num_travellers_to_other_locations = YF_Brazil$T_D[indstate,], num_travellers_from_other_locations = YF_Brazil$T_O[indstate,], avg_length_stay_days = YF_Brazil$length_of_stay, r_incubation = incubation, r_infectious = infectious, n_sim = 100000, return_all_simulations = FALSE ) head(res)
## Using an epiflows object -------------------------------- data("YF_flows") data("YF_locations") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ## functions generating incubation and infectious periods incubation <- function(n) { rlnorm(n, 1.46, 0.35) } infectious <- function(n) { rnorm(n, 4.5, 1.5/1.96) } res <- estimate_risk_spread(ef, location_code = "Espirito Santo", r_incubation = incubation, r_infectious = infectious, n_sim = 1e5, return_all_simulations = TRUE) boxplot(res, las = 3) ## Using other data -------------------------------------------------- data(YF_Brazil) indstate <- 1 # "Espirito Santo" (indstate = 1), # "Minas Gerais" (indstate = 2), # "Southeast Brazil" (indstate = 5) res <- estimate_risk_spread( location_code = YF_Brazil$states$location_code[indstate], location_population = YF_Brazil$states$location_population[indstate], num_cases_time_window = YF_Brazil$states$num_cases_time_window[indstate], first_date_cases = YF_Brazil$states$first_date_cases[indstate], last_date_cases = YF_Brazil$states$last_date_cases[indstate], num_travellers_to_other_locations = YF_Brazil$T_D[indstate,], num_travellers_from_other_locations = YF_Brazil$T_O[indstate,], avg_length_stay_days = YF_Brazil$length_of_stay, r_incubation = incubation, r_infectious = infectious, n_sim = 100000, return_all_simulations = FALSE ) head(res)
This accessor extract flow data from an epiflows
object. get_flows
is a generic with a method defined for
epiflows
objects.
get_flows(x, ...) ## S3 method for class 'epiflows' get_flows(x, from = NULL, to = NULL, all = FALSE, ...)
get_flows(x, ...) ## S3 method for class 'epiflows' get_flows(x, from = NULL, to = NULL, all = FALSE, ...)
x |
An 'epiflows' object. |
... |
unused |
from |
a character string defining which regions should be included in the flows |
to |
a character string defining which regions should be included in the flows |
all |
when 'TRUE', all the columns of the flows data frame will be returned. Defaults to 'FALSE', which returns "from", "to", and "n". |
A data.frame
with 3 columns:
from
: origin of the flow
to
: destination of the flow
n
: magnitude of the flow—can be a number of passengers per
unit of time, a rate, a probability of migration
Zhian N. Kamvar
get_n()
;
For location metadata: get_locations()
; get_vars()
, get_pop_size()
, get_coordinates()
data("Brazil_epiflows") head(get_flows(Brazil_epiflows)) get_flows(Brazil_epiflows, from = "Minas Gerais") get_flows(Brazil_epiflows, to = "Minas Gerais") get_flows(Brazil_epiflows, from = "Italy", to = "Minas Gerais")
data("Brazil_epiflows") head(get_flows(Brazil_epiflows)) get_flows(Brazil_epiflows, from = "Minas Gerais") get_flows(Brazil_epiflows, to = "Minas Gerais") get_flows(Brazil_epiflows, from = "Italy", to = "Minas Gerais")
this will return the unique population ID for your epiflows object.
get_id(x, ...)
get_id(x, ...)
x |
an epiflows object |
... |
arguments passed on to |
a character vector of population IDs
Zhian N. Kamvar
epicontacts::get_id()
; get_vars()
; get_pop_size()
; global_vars()
data("Brazil_epiflows") get_id(Brazil_epiflows)
data("Brazil_epiflows") get_id(Brazil_epiflows)
This accessor extract location data from an epiflows
object.
get_locations
is a generic with a method defined for epiflows
objects.
get_locations(x, ...) ## S3 method for class 'epiflows' get_locations(x, ...)
get_locations(x, ...) ## S3 method for class 'epiflows' get_locations(x, ...)
x |
An |
... |
unused |
A data.frame
with at least 1 column called id
,
specifying the id of the location used in the flows
data frame.
Thibaut Jombart, Zhian Kamvar
get_flows()
; get_id()
; get_pop_size()
; get_vars()
;
get_coordinates()
; global_vars()
data("Brazil_epiflows") get_locations(Brazil_epiflows)
data("Brazil_epiflows") get_locations(Brazil_epiflows)
This convenience function will return a named vector containing the number of cases flowing to or from a given region.
get_n(x, from = NULL, to = NULL, ...) ## S3 method for class 'epiflows' get_n(x, from = NULL, to = NULL, ...)
get_n(x, from = NULL, to = NULL, ...) ## S3 method for class 'epiflows' get_n(x, from = NULL, to = NULL, ...)
x |
an epiflows object |
from |
a character vector of length one specifying the location from which the flows originate |
to |
a character vector of length one specifying the location to which the flows terminate |
... |
unused |
There are three possible outputs of this function:
no options specified: an un-named vector, equivalent to get_flows(x)$n
from = X: a named vector of cases flowing from X
to = X: a named vector of cases flowing to X
a character vector
get_flows()
;
For location metadata: get_vars()
, get_pop_size()
, get_coordinates()
data(Brazil_epiflows) get_n(Brazil_epiflows, from = "Espirito Santo") get_n(Brazil_epiflows, to = "Espirito Santo")
data(Brazil_epiflows) get_n(Brazil_epiflows, from = "Espirito Santo") get_n(Brazil_epiflows, to = "Espirito Santo")
Get population size for each entry in locations
get_pop_size(x) ## S3 method for class 'epiflows' get_pop_size(x)
get_pop_size(x) ## S3 method for class 'epiflows' get_pop_size(x)
x |
an epiflows object |
a named vector of population sizes
data("Brazil_epiflows") get_pop_size(Brazil_epiflows)
data("Brazil_epiflows") get_pop_size(Brazil_epiflows)
This accessor extracts variables from the locations
data frame in an
epiflow
object. get_vars
is a generic with a method defined for
epiflows
objects.
get_vars(x, ...) ## S3 method for class 'epiflows' get_vars(x, what = NULL, id = TRUE, vector = FALSE, ...) set_vars(x, ...) set_vars(x, name) <- value ## S3 method for class 'epiflows' set_vars(x, ...) ## S3 replacement method for class 'epiflows' set_vars(x, name) <- value
get_vars(x, ...) ## S3 method for class 'epiflows' get_vars(x, what = NULL, id = TRUE, vector = FALSE, ...) set_vars(x, ...) set_vars(x, name) <- value ## S3 method for class 'epiflows' set_vars(x, ...) ## S3 replacement method for class 'epiflows' set_vars(x, name) <- value
x |
An |
... |
For |
what |
a valid character string specifying the variable desired. If 'NULL' (default), the names of the available vars will be returned. |
id |
a logical. If 'TRUE' (default), the 'id' column of the locations will be the first column of the data frame. if 'FALSE', the variable will be returned with identifiers as row names. |
vector |
if 'TRUE' the result will be coerced into a vector (or a matrix in the case of coordinates) |
name |
the name of the variable in |
value |
the name of the column in the locations data |
A data frame with the variables requested
Thibaut Jombart, Zhian Kamvar
global_vars()
; make_epiflows()
; get_pop_size()
; get_id()
data("Brazil_epiflows") get_vars(Brazil_epiflows) # defined global variables pointint to column names get_vars(Brazil_epiflows, "duration_stay") get_vars(Brazil_epiflows, "duration_stay", vector = TRUE)
data("Brazil_epiflows") get_vars(Brazil_epiflows) # defined global variables pointint to column names get_vars(Brazil_epiflows, "duration_stay") get_vars(Brazil_epiflows, "duration_stay", vector = TRUE)
The metadata in locations such as population size, duration of stay in a
given location, date of first and last cases, etc. can be useful in estimating
the risk of spread, but not everyone will code their data with identical column
names. To facilitate their use in the function estimate_risk_spread()
, the
epiflows object stores a dictionary of variables in a place called $vars
.
We can tell epiflows what variables are important when we create the object.
global_vars(..., set = FALSE, reset = FALSE)
global_vars(..., set = FALSE, reset = FALSE)
... |
quoted varaibles to add to the default variables |
set |
when |
reset |
when |
The default varaibles are:
coordinates
: two columns specifying the lon and lat coordinates
pop_size
: population size of each location
duration_stay
: the average duration of stay for each location
first_date
: the date of first recorded case
last_date
: the date of the last recorded case
num_cases
: the number of cases between the first and last date
make_epiflows()
, get_locations()
, get_vars()
, set_vars()
, get_coordinates()
# see the default varaibles global_vars() # Equivalent getOption("epiflows.vars") # create an object, specifying these variables data("YF_locations") data("YF_flows") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef # You will receive an error if a variable is specified incorrectly YF_locations$random_variable <- runif(nrow(YF_locations)) try({ ef <- make_epiflows(flows = YF_flows, locations = YF_locations, Pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases", random = "random_variable" ) }) # If you create a new method and need other varaibles, or just want a shorter # representation, they can be added to your options: global_vars("random", set = TRUE) YF_locations$random_variable <- runif(nrow(YF_locations)) ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases", random = "random_variable" ) # You can also reset the variables global_vars(reset = TRUE)
# see the default varaibles global_vars() # Equivalent getOption("epiflows.vars") # create an object, specifying these variables data("YF_locations") data("YF_flows") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef # You will receive an error if a variable is specified incorrectly YF_locations$random_variable <- runif(nrow(YF_locations)) try({ ef <- make_epiflows(flows = YF_flows, locations = YF_locations, Pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases", random = "random_variable" ) }) # If you create a new method and need other varaibles, or just want a shorter # representation, they can be added to your options: global_vars("random", set = TRUE) YF_locations$random_variable <- runif(nrow(YF_locations)) ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases", random = "random_variable" ) # You can also reset the variables global_vars(reset = TRUE)
This grid plot shows flows between locations by positioning origins and
destination in y and x axes, respectively. This function is called when
plotting epiflows
with type = "grid"
.
grid_epiflows(x, color_by = c("from", "to", "none"), ...)
grid_epiflows(x, color_by = c("from", "to", "none"), ...)
x |
An |
color_by |
A character string indicating if flows should be colored by
origin ( |
... |
arguments passed on to |
Thibaut Jombart
An epiflows object contains a pair of data frames that provide information about locations and flows between locations.
make_epiflows(...) ## S3 method for class 'data.frame' make_epiflows( flows, locations = NULL, from = 1L, to = 2L, n = 3L, id = 1L, ... ) ## S3 method for class 'integer' make_epiflows(inflow, outflow, focus, locations, id = 1L, ...) ## S3 method for class 'numeric' make_epiflows(inflow, outflow, focus, locations, id = 1L, ...)
make_epiflows(...) ## S3 method for class 'data.frame' make_epiflows( flows, locations = NULL, from = 1L, to = 2L, n = 3L, id = 1L, ... ) ## S3 method for class 'integer' make_epiflows(inflow, outflow, focus, locations, id = 1L, ...) ## S3 method for class 'numeric' make_epiflows(inflow, outflow, focus, locations, id = 1L, ...)
... |
Any number of varaibles that can be used for mapping or modelling.
See |
flows |
a data frame where each row represents a flow from one location to the next. This must have at least three columns:
|
locations |
a data frame where each row represents a location. This can
have any number of columns specifying useful metadata about the location,
but it must contain at least one column specifying the location ID used in
the |
from |
the column in the |
to |
the column in the |
n |
the column in the |
id |
The column to use for the identifier in the |
inflow |
a named integer or numeric vector specifying the number of
cases flowing into a location specified by |
outflow |
a named integer or numeric vector specifying the number of
cases flowing from a location specified by |
focus |
a character vector specifying the focal location for integer input. This is necessary for integer input to make clear what "outflow" and "inflow" are relative to. |
The epiflows
object can be constructed using simply a list of locations with
optional metadata (similar to a linelist) and a list of flows that describes
the number of cases flowing from one location to another. Optional metadata
such as coordinates and duration of stay can be included in the linelist for
use in estimate_risk_spread()
or map_epiflows()
.
Because a flow of cases from one location to another can be thought of as a
contact with a wider scope, the epiflows
object inherits from the
epicontacts
object, constructed via epicontacts::make_epicontacts()
.
This means that all the methods for subsetting an object of class
epicontacts
also applies to epiflows
, including the use of the function
epicontacts::thin()
. One caveat is that, internally, the names of the
elements within the object do not match the terminology used in epiflows.
An epiflows
object in list format with four elements:
locations (accessible via get_locations()
): a data frame of
locations with first column 'id' containing character vector of unique
identifiers.
flows (accessible via get_flows()
): data.frame of flows with first
two columns named 'from' and 'to' indicating directed flows between two
locations, and a third column named 'n', specifying the number of cases in
each
vars (accessible via get_vars()
). This contains a named list of
available variables that can be used in further plotting and/or modelling.
Default variables are found in global_vars()
:
coordinates
: two columns specifying the lon and lat coordinates
pop_size
: population size of each location
duration_stay
: the average duration of stay for each location
first_date
: the date of first recorded case
last_date
: the date of the last recorded case
num_cases
: the number of cases between the first and last date
Zhian Kamvar, Thibaut Jombart
global_vars()
for definitions of global variables,
estimate_risk_spread()
for modelling, plot.epiflows()
for plotting,
add_coordinates()
for adding coordinates, get_vars()
for accession of
metadata, get_locations()
to access the locations data frame,
get_flows()
to access the flows data frame.
## Load data data(YF_flows) data(YF_locations) YF_flows YF_locations ## Use both to create the epiflows object. ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef # Access variable information get_pop_size(ef) get_vars(ef, "duration_stay") get_vars(ef, "num_cases") data(YF_Brazil) (inflows <- YF_Brazil$T_O["Espirito Santo", , drop = TRUE]) (outflows <- YF_Brazil$T_D["Espirito Santo", , drop = TRUE]) (locations <- subset(YF_Brazil$states, location_code == "Espirito Santo", drop = FALSE)) los <- data.frame(location_code = names(YF_Brazil$length_of_stay), length_of_stay = YF_Brazil$length_of_stay, stringsAsFactors = FALSE ) locations <- merge(x = locations, y = los, by = "location_code", all = TRUE) ef <- make_epiflows(inflow = inflows, outflow = outflows, focus = "Espirito Santo", locations = locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef
## Load data data(YF_flows) data(YF_locations) YF_flows YF_locations ## Use both to create the epiflows object. ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef # Access variable information get_pop_size(ef) get_vars(ef, "duration_stay") get_vars(ef, "num_cases") data(YF_Brazil) (inflows <- YF_Brazil$T_O["Espirito Santo", , drop = TRUE]) (outflows <- YF_Brazil$T_D["Espirito Santo", , drop = TRUE]) (locations <- subset(YF_Brazil$states, location_code == "Espirito Santo", drop = FALSE)) los <- data.frame(location_code = names(YF_Brazil$length_of_stay), length_of_stay = YF_Brazil$length_of_stay, stringsAsFactors = FALSE ) locations <- merge(x = locations, y = los, by = "location_code", all = TRUE) ef <- make_epiflows(inflow = inflows, outflow = outflows, focus = "Espirito Santo", locations = locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) ef
The function map_epiflows
uses leaflet
to generate an interactive map
displaying flows of people travelling between locations stored in a
epiflows
object. Note that the object needs to possess geographic
coordinates.
map_epiflows( x, title = "", center = NULL, sort = TRUE, pal = "YlOrBr", adjust_width = TRUE, ... )
map_epiflows( x, title = "", center = NULL, sort = TRUE, pal = "YlOrBr", adjust_width = TRUE, ... )
x |
An |
title |
Plot title. |
center |
An optional set of coordinates or character string specifying ID to use as the center of the map |
sort |
a logical. When |
pal |
a color palette to pass on to |
adjust_width |
a logical specifying if the width of the flows should
be adjusted to reflect the number of flows between locations. Defaults to
|
... |
Additional parameters (not used). |
A leaflet
object
Paula Moraga, Pawel Piatkowski, Salla Toikkanen, Zhian Kamvar
data("Brazil_epiflows") data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) plot(ef) map_epiflows(ef, center = "Espirito Santo", title = "Flows to and from Brazil")
data("Brazil_epiflows") data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) plot(ef) map_epiflows(ef, center = "Espirito Santo", title = "Flows to and from Brazil")
The plot
method for epiflows
objects offers types of
graphics (argument type
):
## S3 method for class 'epiflows' plot(x, type = c("map", "network", "grid"), ...)
## S3 method for class 'epiflows' plot(x, type = c("map", "network", "grid"), ...)
x |
an epiflows object. |
type |
The type of plot to produce (defaults to map). |
... |
arguments passed on to a given type |
map
: flows are displayed on an interactive map; see map_epiflows for
more details
network
: flows are displayed as a network using the htmlwidget
visNetwork
and the plotting method for epicontacts
objects; see
vis_epiflows for more details
grid
: flows are displayed as a grid between origins and destinations;
see grid_epiflows for more details
Salla Toikkanen, Thibaut Jombart, Zhian Kamvar
data("Brazil_epiflows") # no coordinates, defaults to network plot(Brazil_epiflows) # grid bubbleplot plot(Brazil_epiflows, "grid") # adding coordinates defaults to map data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) plot(ef)
data("Brazil_epiflows") # no coordinates, defaults to network plot(Brazil_epiflows) # grid bubbleplot plot(Brazil_epiflows, "grid") # adding coordinates defaults to map data("YF_coordinates") ef <- add_coordinates(Brazil_epiflows, YF_coordinates[-1]) plot(ef)
Displays a short summary of an epiflows
object.
## S3 method for class 'epiflows' print(x, ...)
## S3 method for class 'epiflows' print(x, ...)
x |
An |
... |
Additional parameters (not used). |
Zhian N. Kamvar, Thibaut Jombart
data("Brazil_epiflows") print(Brazil_epiflows)
data("Brazil_epiflows") print(Brazil_epiflows)
This function shows flows between locations using a dynamic network
visualisation implemented in the package visNetwork, calling the
function epicontacts::vis_epicontacts()
of the epicontacts
package. The thickness of arrows/edges is proportional to the corresponding
flows.
vis_epiflows(x, arrows = TRUE, max_width = 10, ...)
vis_epiflows(x, arrows = TRUE, max_width = 10, ...)
x |
An |
arrows |
A logical indicating if arrows should be used to show directionality of the flows. |
max_width |
A single number indicating the maximum width of an edge (corresponding to the largest flow). |
... |
Further arguments passed to |
Thibaut Jombart
This data set contains flows to and from five states in Brazil formatted in a list with the following items:
data("Brazil_epiflows") data("YF_coordinates") data("YF_locations") data("YF_flows") data("YF_Brazil")
data("Brazil_epiflows") data("YF_coordinates") data("YF_locations") data("YF_flows") data("YF_Brazil")
An object of class list
of length 4.
$states
: a data frame containing metadata for five Brazilian States:
Espirito Santo, Minas Gerais, Rio de Janeiro, Sao Paulo, and Southeast
Brazil
$location_code
: names of the states
$location_population
: population size for each state
$num_cases_time_window
: number of cases recorded between 2016-12 and 2017-05
$first_date_cases
: date of first disease case in the given location in ISO 8601 format
$last_date_cases
: date of last disease case in the given location in ISO 8601 format
$T_D
A matrix containing the number of travellers from the infectious
location visiting other locations
$T_O
A matrix containing the number of travellers visiting the infectious location
$length_of_stay
A named vector containing the average length of stay in
days of travellers from other locations visiting the infectious locations.
Dorigatti I, Hamlet A, Aguas R, Cattarino L, Cori A, Donnelly CA, Garske T, Imai N, Ferguson NM. International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017. Euro Surveill. 2017;22(28):pii=30572. DOI: doi:10.2807/1560-7917.ES.2017.22.28.30572
make_epiflows()
for transformation to an epiflows object
estimate_risk_spread()
# This is an example of an epiflows object data("Brazil_epiflows") Brazil_epiflows # The above data was constructed from a data frame containing flows and # one containing location metadata data("YF_flows") data("YF_locations") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) # Both of the above data frames were constructed like so: data("YF_Brazil") # Create the flows data frame from <- as.data.frame.table(YF_Brazil$T_D, stringsAsFactors = FALSE) to <- as.data.frame.table(t(YF_Brazil$T_O), stringsAsFactors = FALSE) flows <- rbind(from, to) colnames(flows) <- c("from", "to", "n") ## Create the locations data frame los <- data.frame(location_code = names(YF_Brazil$length_of_stay), length_of_stay = YF_Brazil$length_of_stay, stringsAsFactors = FALSE ) locations <- merge(x = YF_Brazil$states, y = los, by = "location_code", all = TRUE) ## Use both to create the epiflows object. ef <- make_epiflows(flows, locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" )
# This is an example of an epiflows object data("Brazil_epiflows") Brazil_epiflows # The above data was constructed from a data frame containing flows and # one containing location metadata data("YF_flows") data("YF_locations") ef <- make_epiflows(flows = YF_flows, locations = YF_locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" ) # Both of the above data frames were constructed like so: data("YF_Brazil") # Create the flows data frame from <- as.data.frame.table(YF_Brazil$T_D, stringsAsFactors = FALSE) to <- as.data.frame.table(t(YF_Brazil$T_O), stringsAsFactors = FALSE) flows <- rbind(from, to) colnames(flows) <- c("from", "to", "n") ## Create the locations data frame los <- data.frame(location_code = names(YF_Brazil$length_of_stay), length_of_stay = YF_Brazil$length_of_stay, stringsAsFactors = FALSE ) locations <- merge(x = YF_Brazil$states, y = los, by = "location_code", all = TRUE) ## Use both to create the epiflows object. ef <- make_epiflows(flows, locations, pop_size = "location_population", duration_stay = "length_of_stay", num_cases = "num_cases_time_window", first_date = "first_date_cases", last_date = "last_date_cases" )